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NOMENCLATURE 

reduced stream function, $/ J(U,vx); 
Grashof number, g/?(T, - T&?/v’ ; 
acceleration of gravity ; 
local heat-transfer coefficient, q/(T, - T,); 
thermal conductivity ; 
local Nusselt number, hx/k; 
Prandtl number; 
local heat-transfer per unit time and area: 
Reynolds, number, U,/v ; 
temperature ; 
wall temperature ; 
ambient temperature : 
free stream velocity ; 
streamwise coordinate ; 
transverse coordinate; 
thermal expansion coefficient ; 
pseudo-similarity variable, equation (1) ; 
temperature variable, (T - T,)/(T, - T, ; 
kinematic viscosity ; 
transformed streamwise coordinate, equation (1); 
stream function. 

INTRODUCTION 

THE note is concerned with aiding forced and free convec, 
tion flows adjacent to an isothermal vertical plate. This 
problem does not admit similarity solutions. Approximate 
solutions, appropriate to small buoyancy effects, have been 
obtained in terms of series expansions about the basic forced 
convection flow [l, 23. Earlier attempts [l, 31 to construct 
series solutions about the free convection flow have recently 
been shown to be in error [4]. In [4], a complete solution, 
numerically applicable to Pr = 1, is obtained by a combina- 
tion of series expansion and numerical integration. A 
solution based on the approximate Karman-Pohlhausen 
method is also available [S], but the results have been found 
to be substantially in error [6], In [6], consideration is given 
to the jimits of Pr + 0 and Pr + co, and results are presented 
for the stagnation region of a horizontal cylinder. The only 
relevant experiments appear to be those of Kliegel[7] which 
pertain to a vertical plate situated in an air stream. 

In the present investigation, the method of local similarity 

is applied. The solutions thus obtained encompass condi- 
tions ranging from pure forced convection flow to combined 
flows with strong free convection contributions. Numerical 
results are presented for Prandtl numbers of Om3, 001, 
0.03, 0.72, 10 and 100, thereby providing detailed informa- 
tion for liquid metals as well as for gases and ordinary 
liquids. 

ANALYSIS 

The coordinate system and other nomenclature are shown 
at the upper left of Fig. 1, where, for aiding forced and free 
convection flows, T, z T,. The analysis is also applicable 
when U, is downward, T, < T,, and x is measured in the 
downward direction. 

The starting point of the analysis is the conservation 
equations for mass, momentum and energy. As a first step 
in the local similarity solution, the coordinates are trans- 
formed from the (x, y) system to the (6 q) system, where 
q = r~(x, y) and e = t(x). The coordinate 11, termed a pseudo- 
similarity variable, serves the function of suppressing the 
x-dependence associated with the normal streamwise de- 
velopment of the boundary layer, that is, the x-dependence 
encountered in similarity boundary layers. Thus, subsequent 
to the transformation, the remaining dependence on the 
streamwise coordinate is that due to the non-similarity alone. 

For the definitions of q and <, we take 

5 = gBK - Tm)x3/v2 Gr, 
lJ2,x=/v= = R$, - x. (1) 

It is seen that q is identical to the similarity variable for the 
forced convection boundary layer, while 5 is a dimensionless 
rephrasing of x itself which also serves as an index of the 
relative contributions of forced convection and free convec- 
tion. In addition to the new coordinates defined by equation 
(l), new dependent variables A[, TV) and e(& q), respectively 
representing the reduced stream function and reduced tem- 
perature, are introduced, where the choice of the reduced 
stream function f is made to complement the foregoing 
choice of q. 

The formal transformation of the conservation equations 
can thus be carried out. Then, in accordance with the 
principle of local similarity, the 5 derivatives are deleted 
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from the thus-transformed equations. The end result of these 
operations is 

subject to the boundary conditions 

f(<.O) = g 0 = 0. @(LO) = 1, 
5.0 

iif 0 =l all< ’ 
e(r, LG) = 0. (3) 

.OCI 

At any streamwise position along the plate, the quantity 
5( = GrJRez) may be regarded as an assignable constant 
parameter. As a consequence, equations (2) and (3) may be 
treated as a system of ordinary differential equations at each 
streamwise location of interest, with numerical solutions 
being obtained by methods used for similarity boundary 
layers. 

Solutions have been carried out for Prandtl numbers 
ranging from 0003 to 100. For each Pr, the quantity GrJRe: 
was varied from 0 to 2-4, thus spanning the range from pure 
forced convection to strong (sometimes dominant) buoyancy 
effects. 

RESULTS AND DISCUSSION 

In terms of the variables of the analysis, the local Nusselt 
number may be expressed as NuJ,/Re, = -@3/h&,. 
The thus-determined values of NuJdRe, are plotted as 
solid lines in Figs. 1 and 2, which, respectively, contain 
results for Pr = 0.72, 10 and 100 (gases and ordinary liquids) 
and for Pr = 0003,@01 and 0.03 (liquid metals). The magni- 
tude of the abscissa variable GrJRez is an index of the relative 
importance of the free convection and forced convection 
contributions. In addition to the local similarity results, the 
figures also contain straight lines which represeht NuJJRe, 
for pure forced convection flow and for pure free convection 
flow. The dashed lines and the experimental data that 

appear in the figures will be discussed later. A listing of 
NuJRe, is also given in Table 1 to facilitate future applica- 
tion. 

Inspection of Figs. 1 and 2 reveals trends that are common 
to all of the Prandtl numbers investigated. At small values of 
GrJRe:, the Nusselt number results (solid lines) merge 
smoothly with the asymptotes for pure forced convection, 
As the free convection grows relatively stronger (i.e. increas- 
ing values of GrJRe:), NuJJRe, increases monotonically, 
deviating more and more from the respective forced convec- 
tion asymptotes. At still larger values of GrJRef, the Nusselt 
number results tend to approach the asymptotes for pure 
free convection. Thus, at any value of GrJRe$ the Nusselt 
number in an aiding combined forced and free convection 
flow is higher than it would be in either of the component 
flows. 

The greatest deviations of the Nusselt number results 
(solid lines) from the envelope curve formed by the forced 
convection and free convection asymptotes occur at the 
intersection of the asymptotes. These deviations are approx- 
imately 15 per cent for Pr = 100 and 10; 19 per cent for 
Pr = 0.72; and 22 per cent for Pr = U.03, 0.01 and 0003. 

One can also determine the value of GrJReZ at which 
significant deviations of the Nusselt number from its forced 
convection value first occur. If a 5 per cent deviation is 
taken as the threshold of significant effects, then the corres- 
ponding threshold values of GrJRef are 0.24,0.13,0.08 and 
O~OSGO~O5, respectively for Pr = 100, 10,0.72 and 0~03-00J3. 
These findings show the greater sensitivity of low Prandtl 
number flows to buoyancy effects. 

The data of Kliegel [7] are. apart from scatter, in very 
good agreement with the results of the present analysis, 
thereby lending support to the analytical method. The 
dashed lines appearing in the figures represent series solu- 
tions, the first term of the series being that for forced con- 
vection flow. The results from the series solutions display 
reasonable trends for small values of GrJRe:, but appear to 
diverge for moderate and large values of this parameter. 

Representative velocity and temperature profiles. In Figs. 
3. 4 and 5. the velocity profiles are referred to the left-hand 

Table 1. Values oj‘Nu,/ J Re, 

Pr 

GrJRe: 0.003 0.01 0.03 0.72 10 
-~ 

- 0.0 002937 0.05159 008439 0.2956 0.7281 
0.01 0.02966 0.05210 048524 0.2979 0.7313 
0.04 0.03040 0@5346 0.08750 0.3044 0.7404 
0.1 0.03160 005565 OQ9118 0.3158 @7574 
0.4 0.03546 0.06264 0.1030 0.3561 0.8259 
1.0 OQ4oOO 0.07079 0.1168 04058 0.9212 
2.0 0.04479 0.07936 0.1311 o-4584 1.029 
4.0 0.1495 0.5258 1.173 

1.572 
1.575 
1.585 
1.605 
1.691 
1.826 
1.994 
2.232 
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ordinate and lower abscissa, while the temperature profiles 
are referred to the right-hand ordinate and upper abscissa. 
From the figures, it is seen that the effect of buoyancy on the 
velocity distribution is markedly different at different 
Prandtl numbers, while the temperature profiles are 
affected in a qualitatively similar manner for all Prandtl 
numbers. 

Turning to the velocity field, it may be observed that aside 
from a somewhat more rapid rise near the wall, the buoyancy- 
affected profiles for PT = 100 are similar to those for pure 
forced convection (Fig. 3). For Pr = 0.72 (Fig. 4), the 
presence of buoyancy results in a relatively sharp rise in the 
profile near the wall and a moderate overshoot (approx- 
imately 40 per cent) of the velocity beyond its free stream 
value. These effects are strongly accentuated at Pr = 0003, 
where the maximum velocity in the boundary layer is 
several times greater than that in the free stream (Fig. 5). 

the limit of large 5. Therefore, an alternate local similarity 
analysis was tried in which q and f were, respectively, the 
free-convection similarity variable and reduced stream 
function, and l = RetlGr, After execution of the trans- 
formation, it is found that the deletion of terms called for by 
the local similarity concept is in conflict with the boundary 
condition u = U, at y = co. Therefore, the local similarity 
model is not applicable in this case. 
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CONCLUDING REMARKS 
The local similarity model used here is not applicable in 

transfer from a vertical flat plate, Ph.D. Thesis Uni- 
versity of California (1959). 


